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TRAINING: I NEED A TARGET DATABASE

e Diffuser flow.

e pyCALC-LES [2] is used for all simulations
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INPUT/OUTPUT

o Traditional wall laws: & = f (4X)
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INPUT/OUTPUT

* Traditional wall laws: ~ = f (4X)

e Do the same in ML
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INPUT/OUTPUT

e Traditional wall laws: u—‘i = f (%)
® Do the same in ML

¥p = influence/inlet parameter
Pt = u(dp/dx{)/u® :  influence/inlet parameter
Ut :  outputparameter
u- up / ut
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INPUT/OUTPUT

o Traditional wall laws: £ = f (¥)
e Do the same in ML

¥p = influence/inlet parameter
Pt = u(dp/dx{)/u® :  influence/inlet parameter
ut output parameter
u- up / ut
2 - .
pus U equation
C,f 242 : kequation
ul .
— € equation
Ky
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DIFFUSER, LES WITH WALE MODEL, PRESSURE GRADIENT

e Well resolved LES, 600 x 150 x 300, 0.3 < Ay™ <22, Azt =11, AxT =22
¢ Inlet: precursor wall-resolved LES of flow in a half-channel at Re. = 2000

(Rep, = 50 000)

e Diffusion angle, short diffuser: 6 < 6 < 14°
¢ Diffusion angle, long diffuser: 8 < 6 < 12°

www.tfd.chalmers.se/lada
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NEURAL NETWORK. PYTHON’S PYTORCH

e e
?2#2/

FIGURE: The Neural Network with two inputs variables, a\” = y+ and &) = P+ and one output
variable, ass) = U". There are three neurons in this figure; in the simulations | have 50.

www.tfd.chalmers.se/ lada CHALMERS Lars Davidson, M2 Fluid Dynamics

5/32



LES. TRAINING TIME-AVERAGED DATA FOR NN, 10°
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0 1 2 0 1(10 0.95 1.00 1.05
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(A) LES grid. (B) Ut v. y*. error (c) 43 Sampling points in y
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IDDES, WALL FUNCTIONS: SETUP

Wall functions based on Neural Network (NN) or Reichardt wall functions

Wall functions on Reichardt’s law

# =Ut = %In(1 —0.4y")+78[1 —exp (—y"/11) = (y"/11)exp (—y*/3)]

is solved using the Newton-Raphson method scipy.optimize.newton in Python.
A course wall-adjacent cell and then finer cells further away from the wall (as in [3])
Turbulence model: IDDES based on the AKN low-Re k — e model

e Pre-cursor channel IDDES with Reichardt’s wall function

Grid; 150 x 73 x 64
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GRID STRATEGY

0.010 0.010
0.008- 0.008 .
0.0061 0.0061
> >
0.0041 0.0041
0.002 0.002 :
0.000 0.000
(A) Low-Re number IDDES grid. (B) Wall function grid. New grid strategy.
FiGure: Different grids. — : grid lines.

e This strategy was used in [1] for channel flow and impinging jets (RANS)
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NN AND REICHARDT. P . = 0.002

0.010 0.10 150
1.5 il - :(‘:ichardt — PN [—— apfox NN
LT 0.008 ks 0.081 ---- P+, Reichardt
— P*,LES 100
60.006 , 0.06 x
A a y 5 2
0.004 0.04{ s S
0.002 0.02{
) 0.00 0
0.000=5 2 4 6 0 2 4 6
X X
() Grid (B) Ct (c) PTand 9p/ox
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LES. TRAINING DATA FOR NN, 6°,10°, 14° AND CHANNEL FLOW

e0e®® . N
15 16 .'..--" o target
14 ..p'
1.0 12 " e
L 'M
10 . -
0.5 . !
6 .
0.0 !
0.0 2.5 5.0 7.5 0 25 50 75 100 125 150
v
i =14° ca(Uf —Uy,
(A) LES grid, oo = 14°. () Ut v. y*. error = ° (Y . [Es) < 0.02
mean(ULES)
0.10
— a=6°
0.006 0.08 — a=10°
- a=14°
+0.004 . 006
o a .
. 0.04
— a=6° RN et
0.0021 a=10° 0.02 /./_
- a=14° ==
0.000 0 1 3 0.00 0 i >
X X
(©) G (D) P*
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R. AND NN, 6°,10°, 14° AND CHANNEL FLOW. P! =

0.010

0.008

. 0.006

0.002

0.000

(a) Grid, . = 18° (B) Cy
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LES. TRAINING DATA FOR NN, 10° AND CHANNEL FLOW
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REICHARDT AND NN, 10° AND CHANNEL FLOW
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AVERAGING P™

The input pressure gradient reads

op/9x1
s

Pt =v

Both dp/0x; and u2 are very unsteady and P+ can become very large when u, gets
small

| always limit the input variable to min/max of training data: typical values of P;,n and
P;h.x are —0.005 and 0.02, respectively.

Instantaneous values can be +10° close to end of the diffuser
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REICHARDT AND NN, 10° AND CHANNEL FLOW, P* AVERAGED
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PREDICTIONS WITH WALL-FUNCTIONS: (7 )(X) FROM LES
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HUMP FLOW

The Reynolds number is Re; = 936 000
® The spanwise extent is Zmax = 0.2.
The mesh has 582 x 106 x 32 cells (x, y, 2)
il Inlet b.c.
T i * Mean from 2D RANS

i ' ¢ Inlet turbulence: fluctuation from STG
® Inlet k and e: 2D RANS plus commutation term in k eq.

e Comparison with
° Experiments [5, 4]
(4) Grid e Well-resolved LES [6, 7, 8]. 420M cells, Ax™ ~ 25,
Ayt ~125, Ayt ~0.8.
¢ |IDDES on the same x — z mesh as WF but with y* ~ 1
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HUMP FLOW: PRESSURE & SKINFRICTION. {P7),;

1.0 0.010
0.5 0.005
S G
0.0 0.000
_OéO.S 0.0 0.5 1.0 1.5 _0'00—50 5 0.0 0.5 1.0 1.5
X X
(A) Presssure coefficient (B) Ct
0.0040 150
0.0035
100
( 0.0030 ;
0.0025
0'00260000 6250 6500 6750 7000 90.5 0.0 0.5 1.0 1.5
Reg X
(c) Cr downstream of the inlet (D) yt for the wall-adjacent cells
FIGURE: : WF, NN; — — : WF, Reichardt; +: exp; — : LES [6, 7, 8]; = = : low-Re IDDES
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HUMP FLOW: VELOCITY. (PT)

X =0.65

0.20

0.15

Y = Ywain
o
=
o

Iy

0005
0004
0003
0002
0001

0.000

FIGURE:
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: WF, NN; = = : WF, Reichardt; +: exp; —: LES [6, 7, 8] = = : low-Re IDDES
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HUMP FLOW: PRESSURE & SKINFRICTION.

e Here | take (1) from LES [6, 7, 8]

1.0 0.010

0.51 0.005
S §)

0.01 0.0001

0205 00 05 1.0 15 000555 60 o5 10 15
X X
(A) Presssure coefficient (B) Cr
FIGURE: = : WF, NN; = = : 7, from LES; +: exp; — : LES [6, 7, 8]
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HUMP FLOW: VELOCITY. (7w)» FROM LES [6. 7, 8]

Y = Ywain
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FIGURE: —: WF, NN; = = : C; from LES; +: exp; — : LES [6, 7, 8]
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HUMP FLOW: PRESSURE & SKINFRICTION. INST. P™

1.0 0.010 0.0040
0.0035
0.5 0.005
¢ G & 0.0030
0.0 0.000
0.0025
035 00 o5 10 15 “0-005,5 50 o5 10 1s 0002000 6250 6500 6750 7000
X X Reg
(a) Presssure coefficient (B) Ct (c) Cr downstream of the inlet and
upstream of the hump
FIGURE: — : WF, NN; — — : WF, Reichardt; +: exp; — : LES [6, 7, 8]; = = : low-Re IDDES
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HUMP FLOW: VELOCITY. INST. PT

0.20 X =0.65
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FIGURE:
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: WF, NN; = = : WF, Reichardt; +: exp; —: LES [6, 7, 8] = = : low-Re IDDES
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INPUT: LES DATA[6, 7, 8] (NO CFD). y* ~ 35 AT THE INLET

0.010

0.005
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9]
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0.005
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0.000

—0.005 -

—: WF, NN
- = WF, Reichardt

-2

0
(©) P* = u(9p/x1) U
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HUMP FLOW: PRESSURE & SKINFRICTION. P™ = v(9p/dx1)/ U3

1.0 0.010 0.0040
\ 0.0035
0.5 0.005
¢ $ P (5 0.0030 B
0.0 0.000 e c v
0.0025
035 00 o5 10 15 “0-005,5 50 o5 10 1s 0002000 6250 6500 6750 7000
X X Reg
(a) Presssure coefficient (B) Ct (c) Cr downstream of the inlet and

upstream of the hump

FIGURE: =—: WF, NN; o: exp; —
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TRAINING DATA FOR NN, 6°...., CHANNEL FLOW FOR y* =1 — 140
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(A) LES grid, a = 14°.
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HUMP FLOW: PRESSURE & SKINFRICTION. P* = 1v(dp/0x;)/ U2,

y*=1-140
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1.0 0.010
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FIGURE: — : WF, NN; o: exp; —
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Huwmp FLOW: IDDES DAMPING FUNCTIONS
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LES, TRAINING DATA, CONVERGENT CHANNEL OF 13°

0.020 0.000
0.015 —0.005
(G 0.010 /\/ + _oo10
0.005 —0.015
0.000 0 3 7 —0.020 0 3 7
) X X
(A) LES grid. (B) Cr (c) P*

e These data can be added to, e.qg, diffuser and channel data.
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CONCLUSIONS

e The NN wall-function works well in channel and boundary flow, but not for
recirculating flow
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on IDDES data.
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CONCLUSIONS

e The NN wall-function works well in channel and boundary flow, but not for
recirculating flow

* I've trained the NN wall-function on high-resolved LES data; | think it's better to train it
on IDDES data.

The objective would then be to make the NN wall-function as accurate as IDDES

| can then create a database (using IDDES) where | store the instantaneous 7y jnst
| can then use 7, jnst @s an exact wall-function b.c.

This would tell me how good the NN wall-function can be.
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recirculating flow

¢ |'ve trained the NN wall-function on high-resolved LES data; | think it's better to train it
on IDDES data.

The objective would then be to make the NN wall-function as accurate as IDDES

| can then create a database (using IDDES) where | store the instantaneous 7y jnst

| can then use 7, jnst @s an exact wall-function b.c.

This would tell me how good the NN wall-function can be.

| will start with diffuser flow (e.g. 10°) at Re, = 5200 (and longer inlet region)
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CONCLUSIONS

The NN wall-function works well in channel and boundary flow, but not for
recirculating flow

I've trained the NN wall-function on high-resolved LES data; | think it's better to train it
on IDDES data.

* The objective would then be to make the NN wall-function as accurate as IDDES
¢ | can then create a database (using IDDES) where | store the instantaneous 7y, inst
® | can then use 7y jnst @s an exact wall-function b.c.

¢ This would tell me how good the NN wall-function can be.

| will start with diffuser flow (e.g. 10°) at Re. = 5200 (and longer inlet region)
Then move on to the hump flow
If it does not work well | will train a ML wall-function using instantaneous IDDES data
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CONCLUSIONS

The NN wall-function works well in channel and boundary flow, but not for
recirculating flow

I've trained the NN wall-function on high-resolved LES data; | think it's better to train it
on IDDES data.

* The objective would then be to make the NN wall-function as accurate as IDDES
¢ | can then create a database (using IDDES) where | store the instantaneous 7y, inst
® | can then use 7y jnst @s an exact wall-function b.c.

¢ This would tell me how good the NN wall-function can be.

| will start with diffuser flow (e.g. 10°) at Re. = 5200 (and longer inlet region)
Then move on to the hump flow

If it does not work well | will train a ML wall-function using instantaneous IDDES data

¢ | should then probably use Random Forest (RandomForestRegressor) or Nearest
neighbor (scipy.spatial .KDTree)
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CONCLUSIONS

The NN wall-function works well in channel and boundary flow, but not for
recirculating flow

I've trained the NN wall-function on high-resolved LES data; | think it's better to train it
on IDDES data.

* The objective would then be to make the NN wall-function as accurate as IDDES
¢ | can then create a database (using IDDES) where | store the instantaneous 7y, inst
® | can then use 7y jnst @s an exact wall-function b.c.

¢ This would tell me how good the NN wall-function can be.

| will start with diffuser flow (e.g. 10°) at Re. = 5200 (and longer inlet region)
Then move on to the hump flow

If it does not work well | will train a ML wall-function using instantaneous IDDES data

¢ | should then probably use Random Forest (RandomForestRegressor) or Nearest
neighbor (scipy.spatial .KDTree)

¢ I'm still worried about the hack in Cy for the hump flow near re-attachment . . .
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