USING PHYSICAL INFORMED NEURAL NETWORK (PINN) TO IMPROVE A $k-\omega$ TURBULENCE MODEL [2]

Lars Davidson, M2 Fluid Dynamics Chalmers University of Technology Gothenburg, Sweden The Wilcox $k - \omega$ turbulence model reads [4]

$$\frac{\partial \bar{\mathbf{v}}_{i}}{\partial \mathbf{x}_{i}} = \mathbf{0}$$

$$\frac{\partial \bar{\mathbf{v}}_{i}}{\partial t} + \frac{\partial \bar{\mathbf{v}}_{i} \bar{\mathbf{v}}_{j}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \bar{\mathbf{p}}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[(\nu + \nu_{t}) \frac{\partial \bar{\mathbf{v}}_{i}}{\partial x_{j}} \right]$$

$$\frac{\partial \bar{\mathbf{v}}_{j} k}{\partial x_{j}} = P^{k} + \frac{\partial}{\partial x_{j}} \left[\left(\nu + \frac{\nu_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right] - C_{\mu} k \omega$$

$$\frac{\partial \bar{\mathbf{v}}_{j} \omega}{\partial x_{j}} = C_{\omega_{1}} \frac{\omega}{k} P^{k} + \frac{\partial}{\partial x_{j}} \left[\left(\nu + \frac{\nu_{t}}{\sigma_{\omega}} \right) \frac{\partial \omega}{\partial x_{j}} \right] - C_{\omega_{2}} \omega^{2}$$

$$P^{k} = \nu_{t} \left(\frac{\partial \bar{\mathbf{v}}_{i}}{\partial x_{i}} + \frac{\partial \bar{\mathbf{v}}_{j}}{\partial x_{i}} \right) \frac{\partial \bar{\mathbf{v}}_{i}}{\partial x_{i}}, \quad \nu_{t} = \frac{k}{\omega}$$
(1)

2/22

The standard coefficients are used, i.e. $C_{\omega 1}=5/9$, $C_{\omega 2}=3/40$, $\sigma_k=\sigma_\omega=2$ and $C_\mu=0.09$.

Fully-developed channel flow, $k-\omega$ model, $Re_{\tau}=5200$

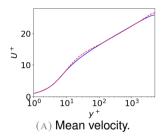


FIGURE: Fully-developed channel flow. Solid lines: $k - \omega$: dashed lines: DNS [3].

• The mean flow, shear stress (and hence the turbulent viscosity, ν_t) agree well

Fully-developed channel flow, $k - \omega$ model, $Re_{\tau} = 5200$

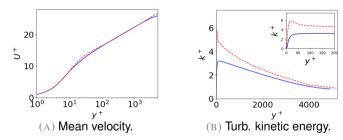


Figure: Fully-developed channel flow. Solid lines: $k - \omega$; dashed lines:DNS [3].

- The mean flow, shear stress (and hence the turbulent viscosity, ν_t) agree well
- But not the turbulent, kinetic energy

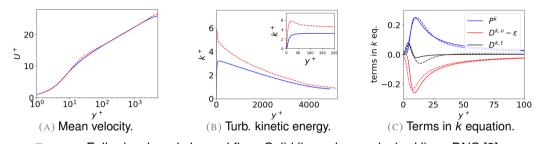


FIGURE: Fully-developed channel flow. Solid lines: $k - \omega$; dashed lines:DNS [3].

- The mean flow, shear stress (and hence the turbulent viscosity, ν_t) agree well
- But not the turbulent, kinetic energy
- It seems to be because the diffusion of k is poorly predicted

FIND A NEW $\nu_{t,k}$

Our ordinary differential equation reads in fully-developed channel flow

$$\frac{d}{dy}\left(\nu + \nu_{t,k}\frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

www.tfd.chalmers.se/~lada

Our ordinary differential equation reads in fully-developed channel flow

$$\frac{d}{dy}\left(\nu + \nu_{t,k}\frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

$$(\nu + \nu_{t,k}) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,k}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (2)

where $\nu_{t,k}$ is the turbulent viscosity in the k_{DNS} equation and Q = 0.

$$\frac{d}{dy}\left(\nu + \nu_{t,k}\frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

$$(\nu + \nu_{t,k}) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,k}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (2)

4/22

where $\nu_{t,k}$ is the turbulent viscosity in the k_{DNS} equation and Q = 0.

• $\nu_{t,k}$ is the unknown

$$\frac{d}{dy}\left(\nu + \nu_{t,k}\frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

$$\left(\nu + \nu_{t,k}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,k}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (2)

where $\nu_{t,k}$ is the turbulent viscosity in the k_{DNS} equation and Q = 0.

- $\nu_{t,k}$ is the unknown
- k_{DNS} , P_{DNS}^k and ε_{DNS} are known (taken from DNS),

$$\frac{d}{dy}\left(
u +
u_{t,k} \frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

$$\left(\nu + \nu_{t,k}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,k}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (2)

where $\nu_{t,k}$ is the turbulent viscosity in the k_{DNS} equation and Q = 0.

- $\nu_{t,k}$ is the unknown
- k_{DNS} , P_{DNS}^k and ε_{DNS} are known (taken from DNS),
- First I tried to use the finite volume method

$$\frac{d}{dy}\left(
u +
u_{t,k} \frac{dk}{dy}\right) + P^k - \varepsilon = Q$$

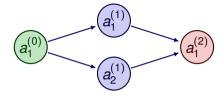
$$\left(\nu + \nu_{t,k}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,k}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (2)

4/22

where $\nu_{t,k}$ is the turbulent viscosity in the k_{DNS} equation and Q = 0.

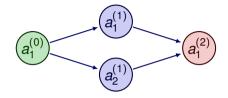
- $\nu_{t,k}$ is the unknown
- k_{DNS} , P_{DNS}^k and ε_{DNS} are known (taken from DNS),
- First I tried to use the finite volume method
- $\nu_{t,k} = \nu_{t,NN}$ in Eq. 2, will be predicted by PINN while minimizing the error Q^2 .

NEURAL NETWORK (NN). PYTHON'S PYTORCH. CRASH COURSE



- I create a NN that finds a damping function, $Y \equiv f$, as a function of input $X \equiv y^+$
- 1 input $(X = a_1^{(0)})$, 1 hidden layer with 2 neurons $(a_1^{(1)}, a_2^{(1)})$ and 1 output $(Y = a_1^{(2)})$

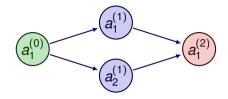
NEURAL NETWORK (NN). PYTHON'S PYTORCH. CRASH COURSE



- I create a NN that finds a damping function, $Y \equiv f$, as a function of input $X \equiv y^+$
- 1 input $(X = a_1^{(0)})$, 1 hidden layer with 2 neurons $(a_1^{(1)}, a_2^{(1)})$ and 1 output $(Y = a_1^{(2)})$

```
class NN(nn.Module):
    def super-__init__(self):
        self.layer_1=nn.Linear(1, 2) # Connection 0-1
        self.layer_2=nn.Linear(2, 1) # Connection 1-2
    def forward(self, x):
        y = torch.nn.functional.sigmoid(self.layer_1(x)) # a_1^{(1)}, a_2^{(1)}, hidden-layer
        output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1^{(2)}, output-layer
```

NEURAL NETWORK (NN). PYTHON'S PYTORCH. CRASH COURSE



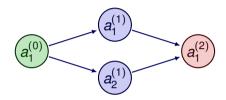
- I create a NN that finds a damping function, $Y \equiv f$, as a function of input $X \equiv y^+$
- 1 input $(X = a_1^{(0)})$, 1 hidden layer with 2 neurons $(a_1^{(1)}, a_2^{(1)})$ and 1 output $(Y = a_1^{(2)})$

```
0.5
                                                                       output
def super-__init__(self):
                                                                         0.0
 self.layer_1=nn.Linear(1, 2) # Connection 0-1
                                                                        -0.5
                                                                                       tanh
                                                                                       relu/10
 self.layer_2=nn.Linear(2, 1) # Connection 1-2
                                                                        -1.0
                                                                                           10
                                                                           -10
def forward(self, x):
                                                                                   input
 y = torch.nn.functional.sigmoid(self.layer_1(x)) # a_1^{(1)}, a_2^{(1)}, hidden-layer
 output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1^{(2)}, output-layer
```

class NN(nn.Module):

1.0

NEURAL NETWORK (NN). FORWARD



Activation 1:
$$a_1^{(1)} = s_1^{(1)} \left(w_1^{(0)} a_1^{(0)} + b_1^{(0)} \right)$$

Activation 2: $a_2^{(1)} = s_2^{(1)} \left(w_2^{(0)} a_1^{(0)} + b_2^{(0)} \right)$

Output: $a_1^{(2)} = s_1^{(2)} \left(w_1^{(1)} a_1^{(1)} + b_1^{(1)} + w_2^{(1)} a_2^{(1)} + b_2^{(1)} \right) \equiv Y$

ullet s is an activation function (linear, sigmoid, tanh, \ldots)

The Python code for the simple NN model is given in the listing below

- loss.backward() computes dL/dw_1 , dL/db_1 , dL/ds_1 ,...
- They are used to get new improved w_1, b_1, \dots

$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dv^2} + \frac{dk_{DNS}}{dv} \frac{d\nu_{t,NN}}{dv} + P_{DNS}^k - \varepsilon_{DNS} = Q \tag{3}$$

$$(\nu + \nu_{t,NN}) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
(3)

$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
(3)

```
def ODE(y, nut):
   nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]
# Differential equation loss
   ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
   ODE_loss = torch.sum(ODE_loss ** 2)
# b.c. loss
   BC_loss = (nut[0] - nut_0) ** 2
   return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,nut)
```

$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (3)

```
def ODE(y, nut):
   nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]
# Differential equation loss
   ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
   ODE_loss = torch.sum(ODE_loss ** 2)
# b.c. loss
   BC_loss = (nut[0] - nut_0) ** 2
   return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,nut)
```

nut is the unknown

$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (3)

```
def ODE(y, nut):
   nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]
# Differential equation loss
   ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
   ODE_loss = torch.sum(ODE_loss ** 2)
# b.c. loss
   BC_loss = (nut[0] - nut_0) ** 2
   return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,nut)
```

- nut is the unknown
- k_{-y}, for example, is dk_{DNS}/dy .

$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (3)

```
def ODE(y, nut):
   nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]
# Differential equation loss
   ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
   ODE_loss = torch.sum(ODE_loss ** 2)
# b.c. loss
   BC_loss = (nut[0] - nut_0) ** 2
   return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,nut)
```

- nut is the unknown
- k_{-y}, for example, is dk_{DNS}/dy .
- Note that k_{-y} and k_{-yy} are known and constant (DNS).

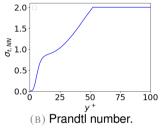
$$\left(\nu + \nu_{t,NN}\right) \frac{d^2 k_{DNS}}{dy^2} + \frac{dk_{DNS}}{dy} \frac{d\nu_{t,NN}}{dy} + P_{DNS}^k - \varepsilon_{DNS} = Q$$
 (3)

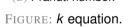
```
def ODE(y, nut):
   nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]
# Differential equation loss
   ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
   ODE_loss = torch.sum(ODE_loss ** 2)
# b.c. loss
   BC_loss = (nut[0] - nut_0) ** 2
   return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,nut)
```

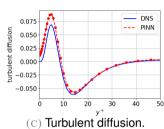
- nut is the unknown
- k_{-y}, for example, is dk_{DNS}/dy .
- Note that k_{-y} and k_{-yy} are known and constant (DNS).
- There are two losses, ODE_loss and BC_loss

SOLVING EQ. 2 WITH PINN.









- Fully-developed flow in half a channel at $Re_{\tau} = 5200$.
- $\sigma_{t,NN} = \nu_t/\nu_{t,NN}$ (ν_t is the turbulent viscosity predicted by the Wilcox $k \omega$ model)
- $\sigma_{t,NN}$ is limited to 2 (same as σ_{k} in the Wilcox $k-\omega$ model)

• The Python finite volume code pyCALC-RANS [1] is used.

- The Python finite volume code pyCALC-RANS [1] is used.
- Fully vectorized (i.e. no for loops).

- The Python finite volume code pyCALC-RANS [1] is used.
- Fully vectorized (i.e. no for loops).
- SIMPLEC and Wilcox $k \omega$ model

- The Python finite volume code pyCALC-RANS [1] is used.
- Fully vectorized (i.e. no for loops).
- SIMPLEC and Wilcox $k \omega$ model
- Discretization: Hybrid first-order upwind/second-order central differencing

- The Python finite volume code pyCALC-RANS [1] is used.
- Fully vectorized (i.e. no for loops).
- SIMPLEC and Wilcox $k \omega$ model
- Discretization: Hybrid first-order upwind/second-order central differencing
- The discretized equations are solved with Python sparse matrix solvers.

CFD, $Re_{\tau} = 5200$

The equation below is solved is using **pyCALC-RANS**

$$\frac{d}{dy}\left(\nu + \nu_{t,NN}\frac{dk}{dy}\right) + P_{DNS}^{k} - \varepsilon_{DNS} = 0$$

where $\nu_{t,NN}$ is known (given by PINN) and P_{DNS}^k and ε_{DNS} are taken from DNS.

CFD, $Re_{\tau} = 5200$

The equation below is solved is using **pyCALC-RANS**

$$\frac{d}{dy}\left(\nu + \nu_{t,NN}\frac{dk}{dy}\right) + P_{DNS}^{k} - \varepsilon_{DNS} = 0$$

where $\nu_{t,NN}$ is known (given by PINN) and P_{DNS}^k and ε_{DNS} are taken from DNS.

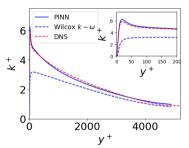


FIGURE: Turbulent kinetic energy.

• I have modified the turbulent Prandtl number in the k equation so that I get correct (larger) k

- I have modified the turbulent Prandtl number in the k equation so that I get correct (larger) k
- Recall that the standard $k \omega$ gives correct $\nu_t = k/\omega = k_{DNS}/\omega_{DNS}$

- I have modified the turbulent Prandtl number in the k equation so that I get correct (larger) k
- Recall that the standard $k \omega$ gives correct $\nu_t = k/\omega = k_{DNS}/\omega_{DNS}$
- I must predict a correct $\varepsilon = \varepsilon_{DNS}$, i.e.

- I have modified the turbulent Prandtl number in the k equation so that I get correct (larger) k
- Recall that the standard $k \omega$ gives correct $\nu_t = k/\omega = k_{DNS}/\omega_{DNS}$
- I must predict a correct $\varepsilon = \varepsilon_{DNS}$, i.e.

$$\frac{d}{dy}\left(\frac{\nu_t}{\sigma_{t,NN}}\frac{dk_{DNS}}{dy}\right) + P_{DNS}^k - \underbrace{C_k C_\mu k_{DNS} \omega_{DNS}}_{\varepsilon_{DNS}} = 0$$

Find C_k and $C_{\omega 2}$

- I have modified the turbulent Prandtl number in the k equation so that I get correct (larger) k
- Recall that the standard $k \omega$ gives correct $\nu_t = k/\omega = k_{DNS}/\omega_{DNS}$
- I must predict a correct $\varepsilon = \varepsilon_{DNS}$, i.e.

$$\frac{d}{dy}\left(\frac{\nu_t}{\sigma_{t,NN}}\frac{dk_{DNS}}{dy}\right) + P_{DNS}^k - \underbrace{C_k C_\mu k_{DNS} \omega_{DNS}}_{\varepsilon_{DNS}} = 0$$

• Finally, the ω equation in the new $k-\omega$ model must predict $\omega=\omega_{DNS}$

$$rac{d}{dy}\left(rac{
u_t}{\sigma_{\omega}}rac{d\omega_{DNS}}{dy}
ight) + C_{\omega 1}rac{\omega_{DNS}}{k_{DNS}}P_{DNS}^k - C_{\omega 2}\omega_{DNS}^2 = 0$$

Plot C_k and $C_{\omega 2}$

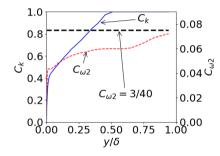
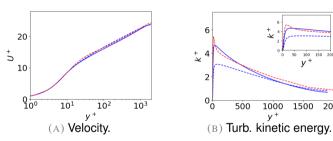


FIGURE: C_k and $C_{\omega 2}$ vs. y/δ .

RESULTS. CHANNEL FLOW. $Re_{\tau} = 2000$



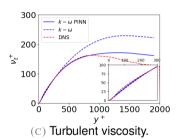


FIGURE: Fully-developed channel flow. $Re_{\tau} = 2000$.

2000

Results. Channel flow. $Re_{\tau} = 5200$

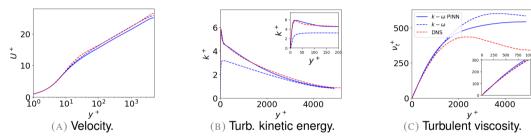
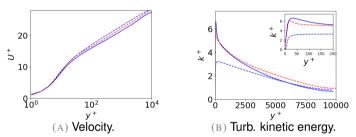


FIGURE: Fully-developed channel flow. $Re_{\tau} = 5200$.

Results. Channel flow. $Re_{\tau} = 10000$



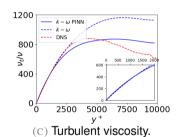


FIGURE: Fully-developed channel flow. $Re_{\tau} = 10\,000$.

RESULTS. FLAT-PLATE BOUNDARY LAYER

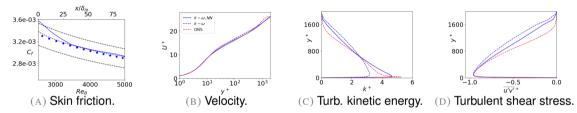


FIGURE: Flat-plate boundary layer. Profiles at $Re_{\theta} = 4500$.

• Inlet profiles from a pre-cursor RANS at $Re_{\theta} = 2500$

• I have made σ_k , C_K and $C_{\omega 2}$ functions of y/δ

- I have made σ_k , C_K and $C_{\omega 2}$ functions of y/δ
- Hence, the current formulation of the model is not applicable to re-circulating flow

- I have made σ_k , C_K and $C_{\omega 2}$ functions of y/δ
- Hence, the current formulation of the model is not applicable to re-circulating flow
- Using Neural Network (NN), I've tried to make them functions of different input parameters such a P_k/ε , P_k^+ , $\nu_t/(yu_\tau)$, ...

- I have made σ_k , C_K and $C_{\omega 2}$ functions of y/δ
- Hence, the current formulation of the model is not applicable to re-circulating flow
- Using Neural Network (NN), I've tried to make them functions of different input parameters such a P_k/ε , P_k^+ , $\nu_t/(yu_\tau)$, ...
- Finally, I found a good combination input parameters: $\overline{u'v'}/u_{\tau}^2$ and $\nu_t/(yu_{\tau})$ (not shown)

• The $k-\omega$ model has been modified using PINN so that it accurately predicts the turbulent kinetic energy

- The $k-\omega$ model has been modified using PINN so that it accurately predicts the turbulent kinetic energy
- I have modified σ_k and $C_{\omega 2}$ and introduced a new C_k

www.tfd.chalmers.se/~lada

- The $k-\omega$ model has been modified using PINN so that it accurately predicts the turbulent kinetic energy
- I have modified σ_k and $C_{\omega 2}$ and introduced a new C_k
- It works well for channel flow and flat-plate boundary layer

- The $k-\omega$ model has been modified using PINN so that it accurately predicts the turbulent kinetic energy
- I have modified σ_k and $C_{\omega 2}$ and introduced a new C_k
- It works well for channel flow and flat-plate boundary layer
- Using NN, σ_k , $C_{\omega 2}$ and C_k are made are functions of $\overline{u'v'}/u_{\tau}^2$ and $\nu_t/(yu_{\tau})$

- The $k-\omega$ model has been modified using PINN so that it accurately predicts the turbulent kinetic energy
- I have modified σ_k and $C_{\omega 2}$ and introduced a new C_k
- It works well for channel flow and flat-plate boundary layer
- Using NN, σ_k , $C_{\omega 2}$ and C_k are made are functions of $\overline{u'v'}/u_x^2$ and $\nu_t/(yu_x)$
- You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or Google pvCALC-RANS PINN

NEURAL NETWORK

- Neural Network and PINN in Python.
 - Good YouTube lectures: "3Blue1Brown: But what is a neural network"; "3Blue1Brown: gradient descent, how neural networks learn"; "3Blue1Brown: backpropagation, intuitively"; "3Blue1Brown: backpropagation, calculus"; "Sebastian Lague: how to create a neural network"

DOWNLOAD

Download paper, Python scripts and CFD codes

- L. Davidson. pyCALC-RANS: a 2D Python code for RANS. Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg Download the code here, 2021.
- [2] L. Davidson. Using physical informed neural network (PINN) to improve a k-omega turbulence model. In 15th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM15), Dubrovnik on 22-24 September, 2025.
- [3] M. Lee and R. D. Moser. Direct numerical simulation of turbulent channel flow up to $Re_{\tau} \approx$ 5200. *Journal of Fluid Mechanics*, 774:395–415, 2015.
- [4] D. C. Wilcox. Reassessment of the scale-determining equation. *AIAA Journal*, 26(11):1299–1310, 1988.