USING NEURAL NETWORK FOR WALL FUNCTIONS INCLUDING PRESSURE GRADIENTS

Lars Davidson

NFFP8 E-WMLES, 12 Dec 2023

TRAINING: I NEED A TARGET DATABASE

$$\frac{\partial \bar{\mathbf{v}}_i}{\partial \mathbf{x}_i} = \mathbf{0}$$

$$\frac{\partial \bar{\mathbf{v}}_i}{\partial t} + \frac{\partial}{\partial \mathbf{x}_j} \left(\bar{\mathbf{v}}_i \bar{\mathbf{v}}_j \right) = -\frac{\partial \bar{\mathbf{p}}}{\partial \mathbf{x}_i} + \frac{\partial}{\partial \mathbf{x}_j} \left[(\nu + \nu_{sgs}) \frac{\partial \bar{\mathbf{v}}_i}{\partial \mathbf{x}_j} \right]$$

- Diffuser flow.
- pyCALC-LES [2] is used for all simulations

• Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

$$egin{array}{lll} y^+_{m
ho}&:\ P^+ =
u(\partialar p/\partial x_1)/u^3_{ au}&:\ U^+&:\ u_{ au}&: \end{array}$$

influence/inlet parameter influence/inlet parameter output parameter \bar{u}_P/U^+

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

$$y_P^+$$
 : influence/inlet parameter
 $P^+ = \nu (\partial \bar{p} / \partial x_1) / u_\tau^3$: influence/inlet parameter
 U^+ : output parameter
 u_τ : \bar{u}_P / U^+
 ρu_τ^2 : \bar{u} equation
 $C_\mu^{-1/2} u_\tau^2$: k equation

$$\frac{u_{\tau}^3}{\kappa y}$$
 : ε equation

DIFFUSER, LES WITH WALE MODEL, PRESSURE GRADIENT

- Well resolved LES, 600 \times 150 \times 300, 0.3 < $\Delta y^+ <$ 22, $\Delta z^+ =$ 11, $\Delta x^+ =$ 22
- Inlet: precursor wall-resolved LES of flow in a half-channel at $Re_{\tau} = 2000$ ($Re_b = 50000$)
- Diffusion angle, short diffuser: $6 \le \theta \le 14^{o}$
- Diffusion angle, long diffuser: $8 \le \theta \le 12^{o}$

NEURAL NETWORK. PYTHON'S PYTORCH

FIGURE: The Neural Network with two inputs variables, $a_1^{(0)} = y^+$ and $a_2^{(0)} = P^+$ and one output variable, $a_1^{(3)} = U^+$. There are three neurons in this figure; in the simulations I have 50.

www.tfd.chalmers.se/~lada

CHALMERS

LES, TRAINING TIME-AVERAGED DATA FOR NN, 10°

6/32

IDDES, WALL FUNCTIONS: SETUP

- Wall functions based on Neural Network (NN) or Reichardt wall functions
- Wall functions on Reichardt's law

$$ar{u}_{P} \equiv U^{+} = rac{1}{\kappa} \ln(1-0.4y^{+}) + 7.8 \left[1 - \exp\left(-y^{+}/11
ight) - (y^{+}/11)\exp\left(-y^{+}/3
ight)
ight]$$

is solved using the Newton-Raphson method scipy.optimize.newton in Python.

- A course wall-adjacent cell and then finer cells further away from the wall (as in [3])
- Turbulence model: IDDES based on the AKN low-Re $k \varepsilon$ model
- Pre-cursor channel IDDES with Reichardt's wall function
- Grid; 150 × 73 × 64

GRID STRATEGY

(A) Low-Re number IDDES grid.

(B) Wall function grid. New grid strategy.

FIGURE: Different grids. — : grid lines.

• This strategy was used in [1] for channel flow and impinging jets (RANS)

www.tfd.chalmers.se/~lada

CHALMERS

NN and Reichardt. $P_{min}^+ = 0.002$

CHALMERS

LES, TRAINING DATA FOR NN, 6°, 10°, 14° AND CHANNEL FLOW

(A) LES grid, $\alpha = 14^{\circ}$.

Lars Davidson, M2 Fluid Dynamics

R. and NN, 6^{o} , 10^{o} , 14^{o} and channel flow. $P_{min}^{+} = -0.005$

LES, TRAINING DATA FOR NN, 10° and channel flow

12/32

Reichardt and NN, 10° and channel flow

CHALMERS

Averaging P^+

• The input pressure gradient reads

$${\cal P}^+ =
u rac{\partial ar{{\cal p}} / \partial x_1}{u_{ au}^3}$$

- Both ∂p̄/∂x₁ and u³_τ are very unsteady and P⁺ can become very large when u_τ gets small
- I always limit the input variable to min/max of training data: typical values of P_{min}^+ and P_{max}^+ are -0.005 and 0.02, respectively.
- Instantaneous values can be $\pm 10^6$ close to end of the diffuser

Reichardt and NN, 10° and channel flow, P^+ averaged

CHALMERS

PREDICTIONS WITH WALL-FUNCTIONS: $\langle \tau_w \rangle(x)$ FROM LES

HUMP FLOW

 $(A) \; \textbf{Grid}$

- The Reynolds number is $Re_c = 936\,000$
- The spanwise extent is $z_{max} = 0.2$.
- The mesh has $582 \times 106 \times 32$ cells (x, y, z)
- Inlet b.c.
 - Mean from 2D RANS
 - Inlet turbulence: fluctuation from STG
 - Inlet k and ε : 2D RANS plus commutation term in k eq.
- Comparison with
 - Experiments [5, 4]
 - Well-resolved LES [6, 7, 8]. 420*M* cells, $\Delta x^+ \simeq 25$, $\Delta y^+ \simeq 12.5$, $\Delta y^+ \simeq 0.8$.
 - IDDES on the same x z mesh as WF but with $y^+ \simeq 1$

CHALMERS

HUMP FLOW: PRESSURE & SKINFRICTION. $\langle P^+ \rangle_{\tau t}$

HUMP FLOW: VELOCITY. $\langle P^+ \rangle_{\tau t}$

19/32

HUMP FLOW: PRESSURE & SKINFRICTION.

• Here I take $\langle \tau_w \rangle_{zt}$ from LES [6, 7, 8]

(A) Presssure coefficient

(в) **С**f

FIGURE: ---- : WF, NN; --- : τ_w from LES; +: exp; ---- : LES [6, 7, 8]

www.tfd.chalmers.se/~lada

CHALMERS

HUMP FLOW: VELOCITY. $\langle \tau_{W} \rangle_{\tau t}$ FROM LES [6, 7, 8]

HUMP FLOW: PRESSURE & SKINFRICTION. INST. P^+

www.tfd.chalmers.se/~lada

Hump flow: velocity. Inst. P^+

23/32

INPUT: LES data[6, 7, 8] (no CFD). $y^+ \simeq 35$ at the inlet

24/32

Hump flow: pressure & skinfriction.
$${\cal P}^+ =
u (\partial ar p / \partial x_1) / U_b^3$$

FIGURE: — : WF, NN; o: exp; —

TRAINING DATA FOR NN, 6° , ..., CHANNEL FLOW FOR $y^+ = 1 - 140$

26/32

HUMP FLOW: PRESSURE & SKINFRICTION. $P^+ = \nu (\partial \bar{p} / \partial x_1) / U_b^3$, $y^+ = 1 - 140$

HUMP FLOW: IDDES DAMPING FUNCTIONS

(A) *x* = 0.65

(B) *x* = 1.10

(C) *x* = 1.30

LES, TRAINING DATA, CONVERGENT CHANNEL OF 13°

• These data can be added to, e.g, diffuser and channel data.

www.tfd.chalmers.se/~lada

CHALMERS

Lars Davidson, M2 Fluid Dynamics 29 / 32

 The NN wall-function works well in channel and boundary flow, but not for recirculating flow

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous τ_{w,inst}

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous $\tau_{w,inst}$
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous τ_{w,inst}
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous τ_{w,inst}
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.
- I will start with diffuser flow (e.g. 10°) at $Re_{\tau} = 5200$ (and longer inlet region)

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous τ_{w,inst}
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.
- I will start with diffuser flow (e.g. 10°) at $Re_{\tau} = 5200$ (and longer inlet region)
- Then move on to the hump flow

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous $\tau_{w,inst}$
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.
- I will start with diffuser flow (e.g. 10°) at $Re_{\tau} = 5200$ (and longer inlet region)
- Then move on to the hump flow
- If it does not work well I will train a ML wall-function using instantaneous IDDES data

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous $\tau_{w,inst}$
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.
- I will start with diffuser flow (e.g. 10°) at $Re_{\tau} = 5200$ (and longer inlet region)
- Then move on to the hump flow
- If it does not work well I will train a ML wall-function using instantaneous IDDES data
 - I should then probably use Random Forest (RandomForestRegressor) or Nearest neighbor (scipy.spatial.KDTree)

- The NN wall-function works well in channel and boundary flow, but not for recirculating flow
- I've trained the NN wall-function on high-resolved LES data; I think it's better to train it on IDDES data.
 - The objective would then be to make the NN wall-function as accurate as IDDES
 - I can then create a database (using IDDES) where I store the instantaneous $\tau_{w,inst}$
 - I can then use $\tau_{w,inst}$ as an exact wall-function b.c.
 - This would tell me how good the NN wall-function can be.
- I will start with diffuser flow (e.g. 10°) at $Re_{\tau} = 5200$ (and longer inlet region)
- Then move on to the hump flow
- If it does not work well I will train a ML wall-function using instantaneous IDDES data
 - I should then probably use Random Forest (RandomForestRegressor) or Nearest neighbor (scipy.spatial.KDTree)
- I'm still worried about the hack in C_f for the hump flow near re-attachment ...

CHALMERS

REFERENCES

- [1] J.-A. Bäckar and L. Davidson. Evaluation of numerical wall functions on the axisymmetric impinging jet using OpenFOAM. *International Journal of Heat and Fluid Flow*, 67:27–42, 2017.
- [2] L. Davidson. pyCALC-LES: a Python code for DNS, LES and Hybrid LES-RANS Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, 2021.
- [3] L. Davidson. Using machine learning for formulating new wall functions for Detached Eddy Simulation?. In 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM14), barcelona/Digital, Spain 6–8 September, 2023.
- [4] D. Greenblatt, K. B. Paschal, C.-S. Yao, and J. Harris. A separation control CFD validation test case Part 1: Zero efflux oscillatory blowing. AIAA-2005-0485, 2005.

www.tfd.chalmers.se/~lada

REFERENCES

- [5] D. Greenblatt, K. B. Paschal, C.-S. Yao, J. Harris, N. W. Schaeffler, and A. E. Washburn. A separation control CFD validation test case. Part 1: Baseline & steady suction. AIAA-2004-2220, 2004.
- [6] A. Uzun and M. R. Malik. LES: Compressible 2-D NASA Wall-Mounted Hump. Database . Langley Research Center, Turbulence Modeling Resource, 2017.
- [7] Ali Uzun and Mujeeb R. Malik. Wall-resolved large-eddy simulation of flow separation over nasa wall-mounted hump. In *55th AIAA Aerospace Sciences Meeting*, 2017.
- [8] Ali Uzun and Mujeeb R. Malik. Large-eddy simulation of flow over a wall-mounted hump with separation and reattachment. *AIAA Journal*, 56(2):715–730, 2018.