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TRAINING: I NEED A TARGET DATABASE
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• Diffuser flow.
• pyCALC-LES [2] is used for all simulations
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INPUT/OUTPUT

• Traditional wall laws: U
uτ

= f
(uτy
ν

)

• Do the same in ML

y+
P : influence/inlet parameter

P+ = ν(∂p̄/∂x1)/u3
τ : influence/inlet parameter

U+ : output parameter

uτ : ūP/U+

ρu2
τ : ū equation

C−1/2
µ u2

τ : k equation

u3
τ

κy
: ε equation
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DIFFUSER, LES WITH WALE MODEL, PRESSURE GRADIENT

• Well resolved LES, 600× 150× 300, 0.3 < ∆y+ < 22, ∆z+ = 11, ∆x+ = 22
• Inlet: precursor wall-resolved LES of flow in a half-channel at Reτ = 2 000

(Reb = 50 000)
• Diffusion angle, short diffuser: 6 ≤ θ ≤ 14o

• Diffusion angle, long diffuser: 8 ≤ θ ≤ 12o
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NEURAL NETWORK. PYTHON’S PYTORCH
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FIGURE: The Neural Network with two inputs variables, a(0)
1 = y+ and a(0)

2 = P+ and one output
variable, a(3)

1 = U+. There are three neurons in this figure; in the simulations I have 50.
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LES, TRAINING TIME-AVERAGED DATA FOR NN, 10o

(A) LES grid. (B) U+ v. y+. error

=
std(U+

NN−U+
LES)

mean(U+
LES)

< 0.01

(C) 43 Sampling points in y
direction.

(D) Cf (E) P+www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 6 / 32



IDDES, WALL FUNCTIONS: SETUP

• Wall functions based on Neural Network (NN) or Reichardt wall functions
• Wall functions on Reichardt’s law

ūP

uτ
≡ U+ =

1
κ

ln(1− 0.4y+) + 7.8
[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)]
is solved using the Newton-Raphson method scipy.optimize.newton in Python.
• A course wall-adjacent cell and then finer cells further away from the wall (as in [3])
• Turbulence model: IDDES based on the AKN low-Re k − ε model
• Pre-cursor channel IDDES with Reichardt’s wall function
• Grid; 150× 73× 64
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GRID STRATEGY

(A) Low-Re number IDDES grid. (B) Wall function grid. New grid strategy.

FIGURE: Different grids. : grid lines.

• This strategy was used in [1] for channel flow and impinging jets (RANS)
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NN AND REICHARDT. P+
min = 0.002

(A) Grid (B) Cf (C) P+ and ∂p̄/∂x
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LES, TRAINING DATA FOR NN, 6o,10o,14o AND CHANNEL FLOW

(A) LES grid, α = 14o. (B) U+ v. y+. error =
std(U+

NN−U+
LES)

mean(U+
LES)

< 0.02

(C) Cf (D) P+

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 32



R. AND NN, 6o,10o,14o AND CHANNEL FLOW. P+
min = −0.005

(A) Grid, α = 18o (B) Cf (C) P+
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LES, TRAINING DATA FOR NN, 10o AND CHANNEL FLOW

(A) LES grid. (B) U+ v. y+. error < 0.01 (C) 46 Sampling points in y
direction.

(D) Cf (E) P+
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REICHARDT AND NN, 10o AND CHANNEL FLOW

(A) Grid (B) Cf (C) P+
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AVERAGING P+

• The input pressure gradient reads

P+ = ν
∂p̄/∂x1

u3
τ

• Both ∂p̄/∂x1 and u3
τ are very unsteady and P+ can become very large when uτ gets

small
• I always limit the input variable to min/max of training data: typical values of P+

min and
P+

max are −0.005 and 0.02, respectively.
• Instantaneous values can be ±106 close to end of the diffuser
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REICHARDT AND NN, 10o AND CHANNEL FLOW, P+ AVERAGED

(A) Grid (B) Cf (C) P+
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PREDICTIONS WITH WALL-FUNCTIONS: 〈τw〉(x) FROM LES

(A) Cf (B) P+ (C) x = 0

(D) x = 1 (E) x = 2 (F) x = 3
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 16 / 32



HUMP FLOW

(A) Grid

• The Reynolds number is Rec = 936 000
• The spanwise extent is zmax = 0.2.
• The mesh has 582× 106× 32 cells (x , y , z)
• Inlet b.c.

• Mean from 2D RANS
• Inlet turbulence: fluctuation from STG
• Inlet k and ε: 2D RANS plus commutation term in k eq.

• Comparison with
• Experiments [5, 4]
• Well-resolved LES [6, 7, 8]. 420M cells, ∆x+ ' 25,

∆y+ ' 12.5, ∆y+ ' 0.8.
• IDDES on the same x − z mesh as WF but with y+ ' 1
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HUMP FLOW: PRESSURE & SKINFRICTION. 〈P+〉zt

(A) Presssure coefficient (B) Cf

(C) Cf downstream of the inlet (D) y+ for the wall-adjacent cells
FIGURE: : WF, NN; : WF, Reichardt; +: exp; : LES [6, 7, 8]; : low-Re IDDES
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HUMP FLOW: VELOCITY. 〈P+〉zt

FIGURE: : WF, NN; : WF, Reichardt; +: exp; : LES [6, 7, 8] : low-Re IDDES
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HUMP FLOW: PRESSURE & SKINFRICTION.

• Here I take 〈τw 〉zt from LES [6, 7, 8]

(A) Presssure coefficient (B) Cf

FIGURE: : WF, NN; : τw from LES; +: exp; : LES [6, 7, 8]
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HUMP FLOW: VELOCITY. 〈τw〉zt FROM LES [6, 7, 8]

FIGURE: : WF, NN; : Cf from LES; +: exp; : LES [6, 7, 8]
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HUMP FLOW: PRESSURE & SKINFRICTION. INST. P+

(A) Presssure coefficient (B) Cf (C) Cf downstream of the inlet and
upstream of the hump

FIGURE: : WF, NN; : WF, Reichardt; +: exp; : LES [6, 7, 8]; : low-Re IDDES
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HUMP FLOW: VELOCITY. INST. P+

FIGURE: : WF, NN; : WF, Reichardt; +: exp; : LES [6, 7, 8] : low-Re IDDES
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 23 / 32



INPUT: LES DATA[6, 7, 8] (NO CFD). y+ ' 35 AT THE INLET

(A) P+ = ν(∂p̄/∂x1)/u3
τ . (B) P+ = ν(∂p̄/∂x1)/U3

b

: WF, NN
: WF, Reichardt

(C) P+ = ν(∂p̄/∂x1)/u3
τ (D) P+ = ν(∂p̄/∂x1)/U3

b
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HUMP FLOW: PRESSURE & SKINFRICTION. P+ = ν(∂p̄/∂x1)/U3
b

(A) Presssure coefficient (B) Cf (C) Cf downstream of the inlet and
upstream of the hump

FIGURE: : WF, NN; ◦: exp;
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TRAINING DATA FOR NN, 6o, . . ., CHANNEL FLOW FOR y+ = 1− 140

(A) LES grid, α = 14o. (B) U+ v. y+. error

=
std(U+

NN−U+
LES)

mean(U+
LES)

< 0.023

(C) 23 Sampling points in y
direction.

(D) Cf (E) P+www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 26 / 32



HUMP FLOW: PRESSURE & SKINFRICTION. P+ = ν(∂p̄/∂x1)/U3
b ,

y+ = 1− 140

(A) Presssure coefficient (B) Cf (C) P+

FIGURE: : WF, NN; ◦: exp;
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HUMP FLOW: IDDES DAMPING FUNCTIONS

(A) x = 0.65 (B) x = 1.10 (C) x = 1.30
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LES, TRAINING DATA, CONVERGENT CHANNEL OF 13o

(A) LES grid. (B) Cf (C) P+

• These data can be added to, e.g, diffuser and channel data.
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CONCLUSIONS

• The NN wall-function works well in channel and boundary flow, but not for
recirculating flow

• I’ve trained the NN wall-function on high-resolved LES data; I think it’s better to train it
on IDDES data.
• The objective would then be to make the NN wall-function as accurate as IDDES
• I can then create a database (using IDDES) where I store the instantaneous τw,inst
• I can then use τw,inst as an exact wall-function b.c.
• This would tell me how good the NN wall-function can be.

• I will start with diffuser flow (e.g. 10o) at Reτ = 5 200 (and longer inlet region)
• Then move on to the hump flow
• If it does not work well I will train a ML wall-function using instantaneous IDDES data

• I should then probably use Random Forest (RandomForestRegressor) or Nearest
neighbor (scipy.spatial.KDTree)

• I’m still worried about the hack in Cf for the hump flow near re-attachment . . .
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[1] J.-A. Bäckar and L. Davidson. Evaluation of numerical wall functions on the
axisymmetric impinging jet using OpenFOAM. International Journal of Heat and Fluid
Flow, 67:27–42, 2017.

[2] L. Davidson. pyCALC-LES: a Python code for DNS, LES and Hybrid LES-RANSÃ.
Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers
University of Technology, Gothenburg, 2021.

[3] L. Davidson. Using machine learning for formulating new wall functions for Detached
Eddy SimulationÃ. In 14th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements (ETMM14), barcelona/Digital, Spain 6–8
September, 2023.

[4] D. Greenblatt, K. B. Paschal, C.-S. Yao, and J. Harris. A separation control CFD
validation test case Part 1: Zero efflux oscillatory blowing. AIAA-2005-0485, 2005.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 31 / 32

http://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/paper-davidson-etmm14.pdf


REFERENCES

[5] D. Greenblatt, K. B. Paschal, C.-S. Yao, J. Harris, N. W. Schaeffler, and A. E.
Washburn. A separation control CFD validation test case. Part 1: Baseline & steady
suction. AIAA-2004-2220, 2004.

[6] A. Uzun and M. R. Malik. LES: Compressible 2-D NASA Wall-Mounted Hump.
DatabaseÃ. Langley Research Center, Turbulence Modeling Resource, 2017.

[7] Ali Uzun and Mujeeb R. Malik. Wall-resolved large-eddy simulation of flow separation
over nasa wall-mounted hump. In 55th AIAA Aerospace Sciences Meeting, 2017.

[8] Ali Uzun and Mujeeb R. Malik. Large-eddy simulation of flow over a wall-mounted
hump with separation and reattachment. AIAA Journal, 56(2):715–730, 2018.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 32

https://turbmodels.larc.nasa.gov/Other_LES_Data/nasa_hump_uzun_2017.html

	References

